RESEARCH ARTICLE

OPEN ACCESS

Maximal and Minimal α -Open Sets

Dr. Haji M. Hasan

Department of Mathematics, College of Basic Education, university of Duhok, Kurdistan-Region, Iraq

Abstract.

In 2001 and 2003, Nakaok and Oda [3] and [4] introduced the notation of maximal open sets and minimal open sets in topological spaces. In 2010, Miguel, Saeid and Seithuti [2], introduced the notation of maximal θ -open sets and minimal θ -closed sets in topological spaces. In this paper, we introduce new classes of sets called maximal α -open sets and minimal α -open sets and investigate some of their fundamental properties.

Key word and phrases: θ -open, maximal open sets, minimal closed, maximal θ -open sets and minimal θ -closed.

Introduction.

The study of α -open sets and their properties were initiated by Njastad [5] in 1965; his introduction of α - open sets. And rijevic [1] gave some properties of α - closure of a set A is denoted by α Cl(A), and defined as intersection of all α -closed sets containing the set A.

I.

F. Nakaok and N. Oda [3] and [4] introduced the notation of maximal open sets and minimal open sets in topological spaces. In (2010) Mlguel Caldas, Saeid Jafari and Seithuti P. Moshokes [2]; introduce the notion of maximal θ -open, minimal θ -closed, θ -semi maximal open and θ -semi minimal closed and investigate some of the fundamental properties.

The purpose of the present paper is to introduce the concept of a new class of open sets called maximal α - open sets and minimal α -closed sets. We also investigate some of their fundamental properties.

II. Definition and Preliminaries.

Definition2.1. [5] A subset *A* of a space *X* is said to be α -open set if $A \subseteq Int(Cl(Int(A)))$. The complement of all α -open set is said to be α -closed. As in the usual sense, the intersection of all α -closed sets of *X* containing *A* is called the α -closure of *A*. also the union of all α -open sets of *X* contained in *A* is called the α -interior of *A*.

Definition2.2. [6] A subset A of a space X is said to be θ -open set if for each $x \in A$, there exists an open set G such that $x \in G \subseteq Cl(G) \subseteq A$.

Definition2.3. [4] A proper nonempty open set U of X is said to be a maximal open set if any open set which contains U is X or U.

Definition2.4. [4] A proper nonempty open set U of X is said to be a minimal open set if any open set which contained in U is ϕ or U.

Definition2.5. [3] A proper nonempty closed subset F of X is said to be a maximal closed set if any closed set which contains F is X or F.

Definition2.6. [3] A proper nonempty closed subset F of X is said to be a minimal closed set if any closed set which contained in F is ϕ or F.

Definition2.7. [2] A proper nonempty θ -open set U of X is said to be a maximal θ -open set if any θ -open set which contains U is X or U.

Definition2.8. [2] A proper nonempty θ -closed set *B* of *X* is said to be a minimal θ -closed set if any θ -closed set which contained in *B* is ϕ or *F*.

III. Maximal and minimal α -open sets.

Definition3.1. A proper nonempty α -open set *A* of *X* is said to be a maximal α -open set if any α -open set which contains *A* is *X* or *A*.

Definition3.2. A proper nonempty α -closed set *B* of *X* is said to be a minimal α -closed set if any α -closed set which contained in *B* is ϕ or *B*.

The family of all maximal α -open (resp.; minimal α -closed) sets will be denoted by

 $M_a \alpha O(X)$ (resp.; $M_i \alpha C(X)$). We set

 $M_a \alpha O(X, x) = \{ A: x \in A \in M_a \alpha O(X) \}, \text{ and }$

 $M_i \alpha C(X, x) = \{ F: x \in A \in M_i \alpha C(X) \}.$

Theorem3.3. Let *A* be a proper nonempty subset of *X*. Then *A* is a maximal α -open set if *X**A* is a minimal α -closed set.

Proof. Necessity. Let A be a maximal α -open. Then $A \subset X$ or $A \subset A$. Hence, $\phi \subset X \setminus A$ or $X \setminus A \subset X \setminus A$. Therefore, by Definition 3.2, $X \setminus A$ is a minimal α -closed set.

Sufficiency. Let $X \mid A$ is be a minimal α -closed set. Then $\phi \subset X \mid A$ or $X \mid A \subset X \mid A$. Hence, $A \subset X$ or $A \subset A$ which implies that A is a maximal α -open set.

The following example shows that maximal-open sets and maximal α -open sets are in general independent. **Example3.4.** Consider $X = \{a, b, c\}$ with topology $\tau = \{\phi, X, \{a\}\}$. Then the family of $\alpha O(X) = \{\phi, X, \{a\}, \{a, b\}, \{a, c\}\}$. So $\{a\}$ is a maximal open in X, which is not maximal α -open in X, and $\{a, b\}$ is a maximal α -open in X, which is not maximal α -open in X, which is not maximal open in X.

Theorem3.5. Any open set if it is a maximal α -open set then it is a maximal open set.

Proof. Let *U* be open and maximal α -open set in a topological space *X*. We want to prove that *U* is a maximal open set. Suppose that *U* is not maximal open set, then $U \neq X$ and there exists an open set *G* such that $U \subset G$ and $U \neq G$, but every open set is α -open, this implies that *G* is a α -open set containing *U* and $U \neq G$ and $U \neq X$, which is contradiction. Hence *U* is a maximal open set.

Theorem3.6. For any topological space *X*, the following statements are true.

- 1) Let *A* be a maximal α -open set and *B* be a α -open. Then $A \cup B = X$ or $B \subset A$.
- 2) Let *A* and *B* be maximal α -open sets. Then $A \cup B = X$ or B = A.
- 3) Let *F* be a minimal α -closed set and *G* be a α -closed set. Then $F \cap G = \phi$ or $F \subset G$.
- 4) Let F and G be minimal α -closed sets. Then $F \cap G = \phi$ or F = G.

Proof (1). Let *A* be a maximal α -open set and *B* be a α -open set. If $A \cup B = X$, then we are done. But if $A \cup B \neq X$, then we have to prove that $B \subset A$, but $A \cup B \neq X$ means

 $B \subset A \cup B$ and $A \subset A \cup B$. Therefore we have $A \subset A \cup B$ and A is a maximal α -open, then by Definition 3.1, $A \cup B = X$ or $A \cup B = A$, but $A \cup B \neq X$, then $A \cup B = A$, which implies $B \subset A$.

Proof (2). Let *A* and *B* be maximal α -open sets. If $A \cup B = X$, then we have done. But if $A \cup B \neq X$, then we have to prove that B = A. Now $A \cup B \neq X$, means $B \subset A \cup B$ and $A \subset A \cup B$. Now $A \subset A \cup B$ and *A* is a maximal α -open, then by Definition 3.1, $A \cup B = X$ or

 $A \cup B = A$, but $A \cup B \neq X$, therefore, $A \cup B = A$, which implies $B \subset A$. Similarly if $B \subset A \cup B$ we obtain $A \subset B$. Therefore B = A.

Proof (3). Let *F* be a minimal α -closed set and *G* be a α -closed set. If $F \cap G = \phi$, then there is nothing to prove. But if $F \cap G \neq \phi$, then we have to prove that $F \subset G$. Now if

 $F \cap G \neq \phi$, then $F \cap G \subset F$ and $F \cap G \subset G$. Since $F \cap G \subset F$ and given that *F* is minimal α -closed, then Definition 3.2, $F \cap G = F$ or $F \cap G = \phi$. But $F \cap G \neq \phi$ then

 $F \cap G = F$ which implies $F \subset G$.

Proof (4). Let *F* and *G* be two minimal α -closed sets. If $F \cap G = \phi$, then there is nothing to prove. But if $F \cap G \neq \phi$, then we have to prove that F = G. Now if $F \cap G \neq \phi$, then $F \cap G \subset F$ and $F \cap G \subset G$. Since $F \cap G \subset F$ and given that *F* is minimal α -closed, then by Definition 3.2, $F \cap G = F$ or $F \cap G = \phi$. But $F \cap G \neq \phi$ then $F \cap G = F$ which implies $F \subset G$. Similarly if $F \cap G \subset G$ and given that *G* is minimal α -closed, then by Definition 3.2, $F \cap G = G$ or $F \cap G = \phi$. But $F \cap G \neq \phi$, then $F \cap G = G$ which implies $G \subset F$. Then F = G.

Theorem3.7.

1) Let A be a maximal α -open set and x is an element of $X \setminus A$. Then $X \setminus A \subset B$ for any α -open set B containing x.

2) Let A be a maximal α -open set. Then either of the following (i) or (ii) holds:

(i) For each $x \in X \setminus A$, and each α -open set *B* containing *x*, *B*=*X*.

(ii) There exists a α -open set B such that $X \setminus A \subset B$, and $B \subset X$.

3) Let A be a maximal α -open set. Then either of the following (i) or (ii) holds:

www.ijera.com

(i) For each $x \in X \setminus A$, and each α -open set *B* containing *x*, we have $X \setminus A \subset B$.

(ii) There exists a α -open set *B* such that $X \setminus A = B \neq X$.

Proof. 1) Since $x \in X \setminus A$, we have $B \not\subset A$ for any α -open set B containing x. Then $A \cup B = X$, by Theorem 3.5(1). Therefore, $X \setminus A \subset B$.

2) If (i) dose not hold, then there exists an element *x* of *X**A*, and a α -open set *B* containing *x* such that *B* $\subset X$. By (1) we have *X**A* $\subset B$.

3) If (ii) dose not hold, then we have $X \setminus A \subset B$ for each $x \in X \setminus A$ and each

 α -open set *B* containing *x*. Hence, we have $X \setminus A \subset B$.

Theorem 3.8. Let *A*, *B* and *C* be maximal α -open sets such that $A \neq B$. If $A \cap B \subset C$, then either A=C or B=C. **Proof.** Given $A \cap B \subset C$. If A=C, then there is nothing to prove. But If $A \neq C$, then we have to prove B=C. Using Theorem 3.6(2), we have

$$B \cap C = B \cap [C \cap X] = B \cap [C \cap (A \cup B)]$$

= $B \cap [(C \cap A) \cup (C \cap B)]$
= $(B \cap C \cap A) \cup (B \cap C \cap B)$
= $(A \cap B) \cup (C \cap B)$, since $A \cap B \subset C$
= $(A \cup C) \cap B$
= $X \cap B = B$, since $A \cup C = X$.

This implies $B \subset C$ also from the definition of maximal α -open set it follows that B = C.

Theorem3.9. Let *A*, *B* and *C* be maximal α -open sets which are different from each ether. Then $(A \cap B) \not\subset (A \cap C)$.

Proof. Let $(A \cap B) \subset (A \cap C)$. Then $(A \cap B) \cup (C \cap B) \subset (A \cap C) \cup (C \cap B)$. Hence,

 $(A \cup C) \cap B \subset C \cap (A \cup B)$. Since by Theorem 3.6(2), $A \cup C = X$. We have $X \cap B \subset C \cap X$ which implies $B \subset C$. From the definition of maximal α -open set it follows that B = C. Contradiction to the fact that A, B and C are different from each other. Therefore $(A \cap B) \subset (A \cap C)$.

Theorem3.10. (1) Let *F* be a minimal α -closed set of *X*. If $x \in F$, then $F \subset G$ for any α -closed set *G* containing *x*.

(2) Let *F* be a minimal α -closed set of *X*. Then $F = \bigcap \{G: G \in \alpha C(X)\}$.

Proof. (1). Let $F \in M_i \alpha C(X, x)$ and $G \in \alpha C(X, x)$, such that $F \not\subset G$. This implies that $F \cap G \subset F$ and $F \cap G \neq \phi$. But since *F* is minimal α -closed, by Definition 2.2, $F \cap G = F$ which contradicts the relation that $F \cap G \subset F$. Therefore $F \subset G$.

(2) By (1) and the fact that F is α -closed containing x, we have $F \subset \bigcap \{G: G \in \alpha C(X, x)\} \subset F$. Therefore we have the result.

Theorem3.11. (1) Let *F* and $\{F_{\lambda}\}_{\lambda \in \Lambda}$ be minimal α -closed sets. If $F \subset \bigcup_{\lambda \in \Lambda} F_{\lambda}$, then there exists $\lambda \in \Lambda$ such that $F = F_{\lambda}$

(2) Let *F* and $\{F_{\lambda}\}_{\lambda \in \Lambda}$ be minimal α -closed sets. If $F \neq F_{\lambda}$ for each $\lambda \in \Lambda$, then $\bigcup_{\lambda \in \Lambda} F_{\lambda} \cap F = \phi$.

Proof. (1) Let *F* and $\{F_{\lambda}\}_{\lambda \in \Lambda}$ be minimal α -closed sets with $F \subset \bigcup_{\lambda \in \Lambda} F_{\lambda}$ we have to prove that $F \cap F_{\lambda} \neq \phi$. Since if $F \cap F_{\lambda} = \phi$, then $F_{\lambda} \subset X \setminus F$ and hence, $F \subset \bigcup_{\lambda \in \Lambda} F_{\lambda} \subset X \setminus F$ which is a contradiction. Now as $F \cap F_{\lambda} \neq \phi$, then $F \cap F_{\lambda} \subset F$ and $F \cap F_{\lambda} \subset F_{\lambda}$. Since $F \cap F_{\lambda} \subset F$ and give that *F* is minimal α -closed, then by Definition2.1, $F \cap F_{\lambda} = F$ or $F \cap F_{\lambda} = \phi$. But $F \cap F_{\lambda} \neq \phi$, then $F \cap F_{\lambda} = F$ which implies $F \subset F_{\lambda}$. Similarly $F \cap F_{\lambda} \subset F_{\lambda}$ and give that F_{λ} is minimal α -closed, then by Definition2.1, $F \cap F_{\lambda} = F_{\lambda}$ or $F \cap F_{\lambda} = \phi$. But $F \cap F_{\lambda} \neq \phi$ then $F \cap F_{\lambda} = F_{\lambda}$ or $F \cap F_{\lambda} = \phi$. But $F \cap F_{\lambda} \neq \phi$ then $F \cap F_{\lambda} = F_{\lambda}$ or $F \cap F_{\lambda} = \phi$. But $F \cap F_{\lambda} \neq \phi$

(2) Suppose that $(\bigcup_{\lambda \in \Lambda} F_{\lambda}) \cap F \neq \phi$ then there exists $\lambda \in \Lambda$ such that $F_{\lambda} \cap F \neq \phi$. By Theorem 3.6(4), we have $F = F_{\lambda}$ which is a contradiction to the fact $F \neq F_{\lambda}$. Hence, $(\bigcup_{\lambda \in \Lambda} F_{\lambda}) \cap F = \phi$.

Some Properties of Maximal
-open set.

Theorem3.12. Let U be a maximal α -open set. Then $\alpha Cl(U)=X$ or $\alpha Cl(U)=U$.

Proof. Since U is a maximal α -open set, the only following cases (1) and (2) occur by Theorem 3.7(2):

- (1) For each $x \in X \setminus U$ and each α -open set W of x, we have $X \setminus U \subset W$, let x be any element of $X \setminus U$ and W be any α -open set of x. Since $X \setminus U \neq W$, we have $W \cap U \neq \phi$ for any α -open set W of x. Hence, $X \setminus U \subset \alpha Cl(U)$. Since $X = X \cup (X \setminus U) \subset U \cup \alpha Cl(U) = \alpha Cl(U) \subset X$, we have $\alpha Cl(U) = X$.
- (2) There exists a α -open set W such that $X \setminus U = W \neq X$, since $X \setminus U = W$ is a α -open set, U is a α -closed set. Therefore, $U = \alpha Cl(U)$.

Theorem3.13. Let U be a maximal α -open set. Then $\alpha Int(X \setminus U) = X \cdot U$ or $\alpha Int(X \setminus U) = \phi$.

Proof. By Theorem 3.7, we have following cases (1) $\alpha Int(X \setminus U) = \phi$ or (2) $\alpha Int(X \setminus U) = X \setminus U$.

Theorem3.14. Let *U* be a maximal α -open set and *S* a nonempty subset of $X \setminus U$. Then $\alpha Cl(S) = X \setminus U$.

Proof. Since $\phi \neq S \subset X \setminus U$, we have $W \cap S \neq \phi$ for any element *x* of $X \setminus U$ and any α -open set *W* of *x* by Theorem 3.12. Then $X \setminus U \subset \alpha Cl(U)$. Since $X \setminus U$ is a α -closed set and $S \subset X \setminus U$, we see that $\alpha CL(S) \subset \alpha Cl(X \setminus U) = X \setminus U$. Therefore $X \setminus U = \alpha Cl(S)$.

Corollary 3.15. Let U be a maximal α -open set and M a subset of X with $U \subset M$. Then $\alpha Cl(M) = X$.

Proof. Since $U \subset M \subset X$, there exists a nonempty subset *S* of *X**U* such that $M = U \cup S$. Hence we have $\alpha Cl(M) = \alpha Cl(U \cup S) = \alpha Cl(U) \cup \alpha Cl(S) \supset (X \setminus U) \cup U = X$ by Theorem 3.14. Therefore $\alpha Cl(M) = X$.

Theorem3.16. Let *U* be a maximal α -open set and assume that the subset $X \setminus U$ has two element at least. Then $\alpha Cl(X \setminus \{a\}) = X$ for any element of $X \setminus U$.

Proof. Since $U \subset X \setminus \{a\}$ by our assumption, we have the result by Corollary 3.15.

Theorem3.17. Let U be a maximal α -open set, and N be a proper subset of X with $U \subset N$. Then, $\alpha Int(N) = U$.

Proof. If N = U, then $\alpha Int(N) = \alpha Int(U) = U$. Otherwise, $N \neq U$, and hence $U \subset N$. It follows that $U \subset \alpha Int(N)$. Since U is a maximal α -open set, we have also $\alpha Int(N) \subset U$. Therefore $\alpha Int(N) = U$.

References

- [1.] D. Andrijevic. Some properties of the topology of α -sets, Math. Vesnik, 36 (1984), 1-10.
- [2.] C. Miguel, J. Saeid and M. Seithuti. On some new maximal and minimal sets via θ- open sets.Commun. Korean Math. Soc. 25 (2010), No.4, 623-628.
- [3.] F. Nakaok and N. Oda. Some application of minimal open sets, Int. J. Math. Math. Sci. 27 (2001), no. 8, 471-476.
- [4.] ------, Some Properties of maximal open sets, Int. J. Math. Math. Sci. (2003), no. 21, 1331-1340.
- [5.] O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15(3) (1965), 961-970.
- [6.] N. Velicko. H-closed topological spaces, Amer. Math. Soc. Transl., 78 (2) (1968), 103-118.